Goal

- Proof Summary
- Prove that the centroid exists
- Prove that the circumcenter exists
- Prove that the orthocenter lies on the line formed by the centroid and circumcenter
- This completes the proof of the Euler Line

Beginning Proof

- We start our proof by drawing an arbitrary triangle
- Let our triangle be called $\triangle A B C$
- Let the midpoints of the triangle be E, F, D
- This is important because:
- We want to show that each of the centers and the Euler Line exists for all possible triangles

Centroid

- First, we arbitrarily draw the medians $C E$ and $A F$
- We could start with any 2 of the 3 medians
- Let M be the intersection of $C E$ and $A F$
- Next, we draw the line $F E$
- We will show that $C M=2 M E$ and $A M=2 M F$
Centroid
- Consider $\triangle A B C$ and $\triangle E B F$
- Since F is a midpoint, $B C=2 B F$
- Since E is a midpoint, $B A=2 B E$
- Also, $\angle A B C=\angle E B F$
- By the SAS rule, $\triangle A B C \sim \triangle E B F$
- Since $\triangle A B C \sim \triangle E B F$ and $B C=2 B F, A C=2 F E$

Centroid

- Thus, we have shown that:

- Any two medians will always intersect at a point that splits the other median in a 1:2 ratio (Midpoint-Vertex)
- Hence, the third median $B D$ must pass through M
- Notice how point M splits all three medians in a 1:2 ratio (Midpoint-Vertex)
- Thus, the centroid exists and indeed it is point M

Circumcenter

- Perpendicular bisector of a line segment is the set of all points which are equidistant from the endpoints of that line segment
- If point Y lies somewhere on the perpendicular bisector of $B C$, then $B Y=C Y$
- If point Z is a point such that $B Z=C Z$, then Z must lie on the perpendicular bisector of $B C$

Circumcenter

- First, we arbitrarily draw two perpendicular bisectors starting from midpoints E and F
- Let \mathcal{L}_{E} be the perpendicular bisector passing through E
- Let \mathcal{L}_{F} be the perpendicular bisector passing through F
- Let R be the intersection of \mathcal{L}_{E} and \mathcal{L}_{F}

Circumcenter

- Since R lies on $\mathcal{L}_{E}, A R=B R$
- Since R lies on $\mathcal{L}_{F}, B R=C R$
- Since, $A R=B R$ and $B R=C R$, then $A R=C R$

Circumcenter

- Since $A R=C R$, then R must lie on the perpendicular bisector of the line segment $A C$
- Hence, the third perpendicular bisector must always intersect at the same point that the other two perpendicular bisectors intersect.
- Thus, the circumcenter exists and indeed it is R

Orthocenter

- We will use the centroid and circumcenter that we proved previously to show that the orthocenter also lies on the same line.
- Recall: The centroid \mathbf{M} splits the medians in a 2:1 ratio
- Recall: $R F, R D, R E$ are the perpendicular bisectors

- Extend line RM to a point O such that $M O=2 R M$
- We want to use the property of the centroid later on
- Draw the line segments $A O, B O, C O$
- We will show that O is indeed the orthocenter

- Consider $\triangle F M R$ and $\triangle A M O$
- By construction, $O M=2 M R$
- From the centroid proof, $A M=2 M F$
- By opposite angles, $\angle F M R=\angle A M O$
- Hence, by SAS rule, $\triangle F M R \sim \triangle A M O$

Orthocenter

- Since $\triangle F M R \sim \triangle A M O, \angle M F R=\angle M A O$
- Since $\angle M F R=\angle M A O, A O \| R F$ (alternate angles)
- Since $R F \perp B C$ and $A O \| R F$, then $A O \perp B C$
- Hence, $A O$ is an altitude of the triangle
- Hence, $A 0$ is an altitude of the triangle

Orthocenter

- Consider $\triangle R M E$ and $\triangle O M C$
- By construction, $O M=2 M R$
- From the centroid proof, $C M=2 M E$
- By opposite angles, $\angle R M E=\angle O M C$
- Hence, by SAS rule, $\triangle R M E \sim \triangle O M C$

- Since $\triangle R M E \sim \triangle O M C, \angle M E R=\angle M C O$
- Since $\angle M E R=\angle M C O, C O \| R E$ (alternate angles)
- Since $R E \perp A B$ and $C O \| R E$, then $C O \perp A B$
- Hence, $C O$ is an altitude of the triangle

- By construction, $O M=2 M R$
- From the centroid proof, $B M=2 M D$
- By opposite angles, $\angle R M D=\angle O M B$
- Hence, by SAS rule, $\triangle R M D \sim \triangle O M B$

- Since $\triangle R M D \sim \triangle O M B, \angle M R D=\angle M O B$
- Since $\angle M R D=\angle M O B, B O \| R D$ (alternate angles)
- Since $R D \perp A C$ and $B O \| R D$, then $B O \perp A C$
- Hence, $B O$ is an altitude of the triangle

- Since $\triangle R M D \sim \triangle O M B, \angle M R D=\angle M O B$
- Since $\angle M R D=\angle M O B, B O \| R D$ (alternate angles)
- Since $R D \perp A C$ and $B O \| R D$, then $B O \perp A C$
- Hence, $B O$ is an altitude of the triangle

Orthocenter

- Since $A O, B O, C O$ are all altitudes of the triangle and O is the point where all 3 altitudes intersect, then O must be the orthocenter
- Hence, the orthocenter exists and is indeed point O

- But also, the orthocenter lies along the line $R M$ which we constructed earlier
- Hence, the Euler Line exists and it is indeed RMO
- In addition, we know from how we constructed this line that $M O=2 R M$

Recap

- Proof Summary
- Prove that the centroid exists - We did this using the ratio 2:1
- Prove that the circumcenter exists
- We did this using the definition of perpendicular bisectors
- Prove that the orthocenter lies on the line formed by the centroid and circumcenter
- We did this by extending the circumcenter-centroid line segment to twice its original length
- This completes the proof of the Euler Line

So what?

-What are the applications of the Euler Line?

- Well, you now know something most of your peers don't
- University-Level Mathematics
- Applying mathematical concepts to real-life problems
- Understanding and writing proofs about theorems
- Keys to Success
- Try to generalize concepts
- Try to explain and teach what you learned
- Know when to study and when to take a break

