Goal

- Proof Summary
 - Prove that the centroid exists
 - Prove that the circumcenter exists
 - Prove that the orthocenter lies on the line formed by the centroid and circumcenter
- This completes the proof of the Euler Line

Beginning Proof We start our proof by drawing an arbitrary triangle Let our triangle be called ΔABC Let the midpoints of the triangle be E, F, D This is important because: We want to show that each of the centers and the Euler Line exists for all possible triangles

